Fast Fourier Transform for Option Pricing: Improved Mathematical Modeling and Design of Efficient Parallel Algorithm

نویسندگان

  • Sajib Barua
  • Ruppa K. Thulasiram
  • Parimala Thulasiraman
چکیده

The Fast Fourier Transform (FFT) has been used in many scientific and engineering applications. The use of FFT for financial derivatives has been gaining momentum in the recent past. In this thesis, i) we have improved a recently proposed model of FFT for pricing financial derivatives to help design an efficient parallel algorithm. The improved mathematical model put forth in our research bridges a gap between quantitative approaches for the option pricing problem and practical implementation of such approaches on modern computer architectures. The thesis goes further by proving that the improved model of fast Fourier transform for option pricing produces accurate option values. ii) We have developed a parallel algorithm for the FFT using the classical Cooley-Tukey algorithm and improved this algorithm by introducing a data swapping technique that brings data closer to the respective processors and hence reduces the communication overhead to a large extent leading to better performance of the parallel algorithm. We have tested the new algorithm on a node SunFire high performance computing system and compared the new algorithm with the traditional Cooley-Tukey

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

High Performance Computing for a Financial Application Using Fast Fourier Transform

Abstract: Fast Fourier Transform (FFT) has been used in many scientific and engineering applications. In the current study, we have applied the FFT for a novel application in finance. We have improved a mathematical model of Fourier transform technique for pricing financial derivatives to help design an effective parallel algorithm. We have then developed a new parallel algorithm for FFT using ...

متن کامل

07 - 12 Multi - asset option pricing using a parallel Fourier - based technique

In this paper we present and evaluate a Fourier-based sparse grid method for pricing multi-asset options. This involves computing multidimensional integrals efficiently and we do it by the Fast Fourier Transform. We also propose and evaluate ways to deal with the curse of dimensionality by means of parallel partitioning of the Fourier transform and by incorporating a parallel sparse grids metho...

متن کامل

Fast Fourier transform technique for the European option pricing with double jumps

In this paper, we provided a fast algorithm for pricing European options under a double exponential jump-diffusion model based on Fourier transform. We derived a closed-form (CF) representation of the characteristic function of the model. By using fast Fourier transform (FFT) technique, we obtained an approximation numerical solution for the prices of European call options. Our numerical result...

متن کامل

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004